Haar ondulieren - traducción al Inglés
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Haar ondulieren - traducción al Inglés

THE FIRST WAVELET
Haar function; Haar transform; Haar basis; Rademacher function; Haar basis functions; Haar Wavelet

Haar ondulieren      
marcel, set hair in waves, curl; wave one's hair, curl one's hair
marcel      
v. Haar ondulieren, wellen

Definición

Haar
·noun A fog; ·esp., a fog or mist with a chill wind.

Wikipedia

Haar wavelet

In mathematics, the Haar wavelet is a sequence of rescaled "square-shaped" functions which together form a wavelet family or basis. Wavelet analysis is similar to Fourier analysis in that it allows a target function over an interval to be represented in terms of an orthonormal basis. The Haar sequence is now recognised as the first known wavelet basis and is extensively used as a teaching example.

The Haar sequence was proposed in 1909 by Alfréd Haar. Haar used these functions to give an example of an orthonormal system for the space of square-integrable functions on the unit interval [0, 1]. The study of wavelets, and even the term "wavelet", did not come until much later. As a special case of the Daubechies wavelet, the Haar wavelet is also known as Db1.

The Haar wavelet is also the simplest possible wavelet. The technical disadvantage of the Haar wavelet is that it is not continuous, and therefore not differentiable. This property can, however, be an advantage for the analysis of signals with sudden transitions (discrete signals), such as monitoring of tool failure in machines.

The Haar wavelet's mother wavelet function ψ ( t ) {\displaystyle \psi (t)} can be described as

ψ ( t ) = { 1 0 t < 1 2 , 1 1 2 t < 1 , 0 otherwise. {\displaystyle \psi (t)={\begin{cases}1\quad &0\leq t<{\frac {1}{2}},\\-1&{\frac {1}{2}}\leq t<1,\\0&{\mbox{otherwise.}}\end{cases}}}

Its scaling function φ ( t ) {\displaystyle \varphi (t)} can be described as

φ ( t ) = { 1 0 t < 1 , 0 otherwise. {\displaystyle \varphi (t)={\begin{cases}1\quad &0\leq t<1,\\0&{\mbox{otherwise.}}\end{cases}}}